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Problem 8) Consider a real-valued function F, defined on the complex plane z = x + iy.
Suppose also that both z and its conjugate z* appear in the argument of the function, so that the
function may be written as F(z,z*). To find an extremum (i.e., minimum, maximum, or saddle
point) of the function, we must set dF /dx and dF /dy equal to zero. We thus have
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The above equations are satisfied if and only if 0F /0z = 0 and 0F / 9z = 0. We now apply this
argument to derive the Schwarz inequality. Let F(1, ™) = f:l f(x) + 1g(x)|?dx, that is,
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Considering that f: f*(x)g(x)dx = [fab f(x) g*(x)dx] , the above solutions for A and A* are
seen to be consistent. Placing these values of A and A* into the expression for F(4,1%), we find
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Since F(A,A*) is known to be >0, the above expression leads directly to the Schwarz
inequality.




